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Abstract

This paper describes a tactical maneuvering
system that uses an artificial immune system based
approach for selecting maneuver sequences. This
approach combines the problem solving abilities of
genetic algorithms with the memory retention
characteristics of an immune system. Of significant
importance here is the fact that the tactical maneuvering
system can make time-critical decisions to accomplish
near-term objectives within a dynamic environment.
These objectives can be received from a human
operator, autonomous executive, or various flight
planning specialists. Simulation tests were performed
using a high performance military aircraft model.
Results demonstrate the potential of using immunized
sequence selection in order to accomplish tactical
maneuvering objectives ranging from flying to a
location while avoiding unforeseen obstacles, to
performing relative positioning in support of air
combat maneuvering.

Introduction

Unmanned Aerial Vehicles (UAVs) have been
demonstrated as effective platforms for supporting both
military and commercial applications. As their role
expands, from remotely controlled to semi-autonomous
and autonomous operations, challenges are presented
which require the development and application of
intelligent systems [1]. These systems must be capable
of making reliable decisions under varying conditions.
As a result, they must incorporate aspects of the
experience, reasoning and learning abilities of a pilot.
By allowing multiple intelligent systems to work
together, through the distribution of roles and
responsibilities, the overall level of autonomy of a
vehicle can be increased. As a result, human operators
can defer the responsibilities of performing and
supervising tasks, to focus on managing mission goals
and objectives.

In terms of achieving a flight-path goal, a
pilot’s behavior can be captured through a layered
model consisting of discrete-time strategic planning and
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tactical maneuvering, and continuous-time manual
control (Figure 1) [2]. The discrete nature of strategic
and tactical behaviors allows for automated decision-
making techniques to be applied. Furthermore, since
strategic planning decisions are less time-critical, more
computationally intensive approaches can be utilized.
All of the continuous-time processing elements can be
isolated in the automation of manual control.

Goal Pilot

Discrete
Strategic Planning

reference target / trajectory

[

Tactical Maneuvering

control modes & targets

Manual Control

Continuous

g

Vehicle

Figure 1. Pilot Behavior Hierarchy

Various flight planning specialists have been
developed which enable UAVs to strategically compute
their own trajectories in order to achieve mission goals.
These trajectories are commonly represented in terms of
waypoints and targets. Some of these flight planners,
utilizing techniques such as evolutionary algorithms [3]
and Voronoi paths [4], are capable of recalculating
trajectories in the presence of obstacles or other
unforeseen circumstances.

In most applications, lateral and vertical path
following control laws are used to automate the task of
manual control. In cases where a path is not flyable,
interconnecting polynomials (or splines) have been
used to smooth out reference trajectories. When
guidance corrections do need to be made, specialists
such as conventional flight management systems use
condition-based control mode transitions. However,
since these systems are incapable of “reasoning”, there
is no guarantee that the necessary corrective actions
will be taken for each condition. As a result, path
corrections and target adjustments have had to be
limited to the strategic level.
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This paper presents a tactical maneuvering
system (TMS) that incorporates pilot oriented actions
in order to achieve strategically computed objectives
(Figure 2). During tactical maneuvering, pilots use
their knowledge of aircraft capabilities and near-optimal
maneuvering strategies in order to select the necessary
actions. These actions can be approximated by piece-
wise linear or piece-wise constant commands, and
switching between commands [5]. As a result, the
interconnection of a finite number of commands can be
used to generate motion-based plans that can exploit the
full maneuvering capabilities of the aircraft [6]. The
TMS incorporates these commands in terms of
autopilot modes and targets. The combination of
multiple commands forms a maneuver sequence, which
represents a near-term aircraft centric trajectory. Once
these sequences are generated, they are sent to a
specialized autopilot system for execution (Figure 2).
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Figure 2. Tactical Maneuvering System

While maneuver sequences can be used to
achieve a wide range of tactical objectives, a major
challenge is determining how to construct them in a
timely fashion. In this innovation, an artificial immune
system based approach is used to construct maneuver
sequences, by taking advantage of the memory retention
and adaptive capabilities of biological immune
systems.

A biological immune system can be thought
of as a robust adaptive system that is capable of dealing
with an enormous variety of disturbances and
uncertainties. The artificial immune system combines a
priori knowledge with the adapting capabilities of a
biological immune system to provide a powerful
alternative to currently available techniques for pattern
recognition, learning and optimization [7]. In this case,
the autopilot modes and targets represent the low-level
building blocks of the parameterized system. Maneuver
sequences representing higher-level building blocks can
also be constructed, or learned off-line, to speed-up the
search during on-line maneuver selection.

This paper contains an overview of the tactical
maneuvering autopilot, the immunized maneuver
selection approach, and preliminary test results using a
high performance military aircraft simulation.
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Tactical Maneuvering Autopilot

The tactical maneuvering autopilot is based
upon a generic neural flight control and autopilot
system (Figure 3), which can be applied to a wide range
of vehicle classes [8]. However, this autopilot has been
enhanced with additional modes and an aggressiveness
factor for enabling high performance maneuvers. The
command interface has also been modified to process
mode and target sequences.
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Figure 3. Autopilot System

The direct adaptive tracking neural flight
controller provides consistent handling qualities, across
flight conditions and for different aircraft
configurations. The guidance system takes advantage of
the consistent handling qualities in order to achieve
deterministic outer-loop performance. Automatic gain-
scheduling is performed using frequency separation,
based upon an aggressiveness factor and the neural
flight controller’s specified reference models.

Neural Flight Controller

The neural flight controller integrates feedback
linearization theory with both pre-trained and on-line
learning neural networks (Figure 4) [9]. Pre-trained
neural networks provide estimates of aerodynamic
stability and control characteristics required for model
inversion. On-line learning neural networks generate
command augmentation signals to compensate for
errors in the estimates and from model inversion.
Reference models, specifying desired handling qualities,
filter rate command attitude hold (RCAH) stick and
pedal inputs to generate the corresponding model-
following commands.
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Figure 4. Neural Flight Controller
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Guidance System

The adaptive nature of the neural flight
controller enables the guidance system to achieve
consistent outer-loop performance without requiring
extensive gain-scheduling or explicit system
identification. This can represent considerable cost
savings, especially in the case of UAVs, during the
development of special use vehicles and for
accommodating payload reconfigurations.

The system also provides additional potential
for adapting to changes in aircraft dynamics under
damage or failure conditions. Figure 5 displays a
consecutive banking maneuver under a simulated
failure, where all flight control surfaces suffered a 70%
loss of control power. During the beginning of the
maneuver, there was a fair amount of overshoot. This
was a result of the integrators in the error controllers
having to windup, in order to compensate for the loss
of control effectiveness. As the on-line learning neural
networks adapted to the error patterns, the integrators
were able to unwind. As a result, the amount of
overshoot decreased throughout the maneuver.

Altitude = 10000 ft, Mach = 0.4
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Figure 5. Consecutive Banking Maneuver with 70%
Loss of Control Power Failure

Automatic gain-scheduling is performed using
frequency separation, based on the natural frequencies of
the specified reference models. The aggressiveness
factor is used to limit the percentage of allowable
RCAH stick and pedal deflections that the guidance
system can command. These limits are then propagated
throughout the guidance system in the form of
computed gains and command limits. In the case of
banking maneuvers, the maximum allowable bank
angle is computed such that adequate longitudinal stick
deflection is available for level-turn compensation.

By adjusting the aggressiveness factor, it is
possible to transition the autopilot from a high
performance mode for time-critical operations, to a
degraded mode for damaged or failure mode operations.
Figure 6 displays a 90 degree heading change maneuver
for aggressiveness factors of 25% and 75%. During the
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more aggressive maneuver, the roll rate is higher due to
an increased lateral stick deflection limit. However the
maximum bank angle is also higher due to an increased
longitudinal stick deflection limit, and corresponding
pitch rate available for level-turn compensation.
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Figure 6. Heading Maneuvers Under Varying
Aggressiveness Factors

Autopilot Commands

Autopilot commands correspond to control
modes, which are based upon a conventional autopilot
system. However additional body-axis modes have been
added to provide the necessary aerobatic maneuvering
capability. Each mode corresponds to control laws,
which are built upon each other to form a control
hierarchy (Figure 7). Each autopilot command consists
of a mode identifier and corresponding target.
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Maneuver Sequences

A maneuver sequence is composed of one or
more autopilot commands, along with scheduling times
for command execution. Mode dependent performance
models are used to predict the aircraft’s state throughout
the maneuver. Adjustments can be made to the
maneuver sequence, or the performance models, by
monitoring the predicted verses actual aircraft state. As
a result, it is possible to adapt to small errors in
prediction, as well as large changes in aircraft
performance resulting from damage or failures.

While maneuver sequences can be generated
automatically in order to accommodate situations as
they arise, specific sequences can also be constructed to
perform common piloting maneuvers. These maneuvers
can range from typical maneuvers such as an S-Turn
(Figure 8), to aerobatic maneuvers such as a Half-
Cuban (Figure 9). Although these maneuvers were
constructed manually, using a trial-and-error method,
the immunized maneuver selection approach uses a
similar method by incorporating predictive performance
models.
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Figure 8. S-Turn Maneuver Sequence
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Figure 9. Half-Cuban Maneuver Sequence
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Immunized Maneuver Selection

The immunized maneuver selection (IMS)
system uses an artificial immune system (AIS) based
approach for selecting maneuver sequences. This
approach takes advantage of the memory retention and
adaptability characteristics of the biological immune
system, in order to solve complex problems in a timely
fashion.

In AIS, the search for a solution is modeled
after the generation of an immune response wherein the
optimal solution is achieved by rapid mutation and
recombination of a genetic representation of the
solution space. During the generation of the immune
response, the system receives a continuous feedback
from the antigen-antibody complex resulting in a
generation of an increasingly specific antibody
response. This represents a learning paradigm that is
used in AIS to develop solutions that continually
increase in accuracy.

Immune System Metaphor

The immune system is made up of two major
divisions, the innate immune system and the adaptive
immune system (Figure 10). The innate immune
system is composed of static defenses, such as skin and
mucus, which serve to separate the individual from
potential threats. These are supplemented by pre-formed
biochemical barriers and other defensive elements, such
as phagocytes, that are widely distributed in the blood
and body tissue. The adaptive response is driven by the
presence of the threat. Cells that nullify the threat most
effectively receive the strongest signal to replicate.

The basic components of the immune system
are white blood cells, or lymphocytes. Lymphocytes
are produced by the bone marrow. Some lymphocytes
only live for a few days. The bone marrow is
constantly making new cells to replace the old ones in
the blood. There are two major classes of lymphocytes:
B-cells produced in the bone marrow in the course of
so-called clonal selection, and T-cells processed in the
thymus. B-lymphocytes secrete antibodies and some B-
cells survive as memory cells. T-cells are concerned
with cellular immunity: they function by interacting
with other cells. T-cells divide into helper T-cells,
which activate B-cells, and killer T-cells that eliminate
intracellular pathogens. Activated B-cells present pieces
of the antigens to killer T-cells.

The immune recognition is based on the
complementarity between the binding region of the
receptor and a portion of the antigen called epitope.
Antibodies do not bind to the whole infectious agent,
but rather to one of the many molecules on the agent's
surface. This means that different antibodies can
recognize a single antigen (Figure 10).

American Institute of Aeronautics and Astronautics



—
Biochemical barriers

Innate Adaptive
Immunity Immunity
IDisease Recovery No Disease I
Skin Innate immune Adaptive immune
response response
H —p n >
* > Lymph\ocytes
Pathogen 3
o ——(0
Phagocyte

Bindin

/-'\

AN
)~ Ab Molecule

Epitopes

Figure 10. Immune System Functional Flow (Top);

Layers of Defense in the Immune System (Middle);

Immune Recognition (Bottom)

Figure 11 presents a system-level description
of the immune system metaphor. There are several
computational models that are based on the principles
of immune systems. These are:

Bone Marrow Models
Negative-Selection Algorithm
Clonal Selection Algorithm
Immune Network Model
Immunized Computational Systems

O O O OO

The assumption of usability of these models
is preceded by the assumption that some understanding
of the problem exists. This is akin to the vast source of
information available to the immune system. Once this
knowledge exists, one can use the immune sub systems
individually or in combination (Figure 11). The
following sections describe how each of these sub
systems is applied for immunized maneuver selection.

Bone Marrow Models

In bone marrow models, gene libraries are used
to create antibodies from the bone marrow. The
antibody production is through a random concatenation
of genes from the gene library. In terms of IMS, the
concept of a gene is replaced with the concept of a
building block. These building blocks can be thought
of as pieces of a puzzle, which must be put together in
a specific way to neutralize, remove, or destroy each
unique disturbance the system encounters.

A low-level building block (or antibody) is
represented by a maneuver. These maneuvers are
expressed in terms of autopilot (mode and target)
commands and maneuver durations. Maneuver durations
are required for constructing a time-based profile.
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Figure 11. System Level Description of the Immune System Metaphor
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Higher-level building blocks that contain multiple
maneuvers, in the form of a maneuver sequence, can
also be constructed or automatically generated. These
building blocks are stored in the maneuver database (or
gene library). At a minimum, the initial maneuver
database must contain at least one maneuver (or
building block) for each available autopilot mode,
along with average targets and durations.

Negative-Selection Algorithm

The negative-selection algorithm is based on
the principle of self-nonself discrimination in the
immune system. This discrimination is achieved in part
by T-cells, which have receptors on their surface that
detect antigens and then activate the necessary B-cells.

In terms of IMS, various detectors are
developed which identify positive characteristics of a
tactical objective (or antigen) and characteristics that
will be detrimental to the objective. Once these
characteristics have been identified, negative selection is
applied on the detrimental characteristics. When the
appropriate maneuver or maneuver sequence has been
selected, the resulting problem-to-solution mapping is
stored in a strength matrix. As the connections between
tactical objectives and maneuvers grow over time, the
likelihood that the necessary maneuvers will be
initially selected increases. As a result, the time
required for finding a solution will be reduced.

Clonal Selection Algorithm

A distinct difference between biological
evolution, and evolution based on the clonal selection
principle, is the time scales. The goal of clonal
selection is to find the most suitable member of a
population in a very short period of time.

The clonal selection algorithm uses selection,
cloning, and maturation (or hypermutation) to perform
the tasks of discovering and maturing good antibodies
from the population of available solutions in an
orchestrated fashion. An algorithm is outlined below:

()
(@)
A3)
“4)

®)
(©6)

Generate an antibody population either randomly
or from a library of available solutions.

Select the n best performing antibody population
by evaluating a performance index.

Reproduce the n best individuals by cloning the
population.

Maturate the antibodies by hypermutation.
Re-Select the best performing antibody population.
Stop if antibody generates satisfactory
performance, otherwise start over from (1) using
probability of mutation.
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In terms of IMS, autopilot mode dependent
performance models are used to predict the flight path
of the aircraft during a maneuver sequence. The
predictor takes advantage of the consistent performance,
provided by the neural flight controller, to simplify the
performance models in terms of command limits and
time constants. This allows the prediction to be
performed with very little computation, verses having
to rely on fast-time simulation at small time steps. The
predictor is initialized with the current aircraft states and
the aircraft’s active flight modes.

The performance index (or cost function) is
expressed in terms of weighted parameters, represented
by the tactical objectives. These tactical objectives can
incorporate both desired and undesired aircraft states, as
well as other factors such as time or fuel usage. The
desired states indicate what position, speed and direction
the aircraft should attempt to achieve at the completion
of the maneuver sequence. The undesired states indicate
what positions the aircraft should avoid during the
maneuver sequence. In cases where obstacles are
present, these undesired states can reflect corresponding
no-fly zones.

Immune Network Model

In the immune network theory, antibodies
recognize both antigens and other antibodies.
Antibodies that recognize other antibodies form a
network within the immune system. As the antibody
matures, it recognizes the antigen with a higher degree
of accuracy. Once the antigen is completely removed,
the network between like-antibodies helps in keeping
the immune system from extinguishing itself. A stable
population is maintained as the memory that will be
useful for future encounters with similar antigen. Since
the learning paradigm in AIS is based on the interaction
between populations of antibodies and antigens, this
provides a unique way at arriving at self-organizing
network structures.

In terms of IMS, successful maneuver
sequences are stored in the maneuver database. This
represents the equivalent of the network of antibodies
(or memory). The connections between antibodies are
stored in the form of maneuver sequences. In order to
limit the size of the maneuver database, maneuver
sequences that are rarely reselected can be deleted over
time.

Immunized Computational System

The immunized computation system (ICS)
incorporates bone marrow models along with clonal
selection to reproduce the robustness and adaptability of
a biological immune system.
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In terms of IMS, this represents the
integration of maneuvers and maneuver sequences (or
bone marrow models), tactical objective detectors and
strength matrix (or negative-selection algorithm),
evolutionary algorithm variant (or clonal selection
algorithm), and maneuver database management (or
immune network model).

Simulation Tests

Simulation tests were performed to evaluate
the use of IMS in order to accomplish various tactical
objectives. Tests were conducted using flight path
following and relative positioning oriented objectives,
in order to evaluate the potential various applications.
These applications could range from flying to a
location while avoiding unforeseen obstacles, to
performing relative positioning in support of air
combat maneuvering.

Simulator Description

Evaluations were conducted using a high
fidelity aerodynamic model of the F-15 ACTIVE
aircraft, currently in operation at NASA Dryden (Figure
12). This modified F-15 has been equipped with canards
and thrust vectoring nozzles, which can be used to
simulate failures in flight. The aircraft is configuration
G of the US Air Force’s Short takeoff and landing
Maneuver Technology Demonstrator (S/MTD)
program.

Figure 12. Modified F-15 Aircraft

A Dryden turbulence model was used to
provide turbulence RMS and bandwidth values
representative of those specified in Military
Specifications Mil-Spec-8785 D of April 1989. The
Earth atmosphere is based on a 1976 standard
atmosphere model.

Test Description

The IMS algorithms were performed using
MATLAB. The generated maneuver sequences were
then sent to the flight simulation for execution and

evaluation. For these tests, maneuver sequences were
not dynamically re-generated during the maneuver. The
aircraft was initialized at 5000 feet with a true heading
of 0 degrees. Initial airspeeds varied from 250 feet/sec
to 450 feet/sec. All tests were performed in light
turbulence.

The maneuver database that was used contained
several maneuvers (or low-level building blocks) for
each autopilot mode. The maneuver database did not
contain pre-generated maneuver sequences (or high-level
building blocks). Also, the size of the maneuver
sequence was fixed to a specific number of building
blocks, during each test, and varied as an experimental
condition. Since tests were not performed using
consecutive tactical objectives, successful maneuver
sequences were not stored back into the maneuver
database.

For all tactical objectives, cost function
weights were either set to 0 or 1. The probability
matrix was also configured with elements of 0 or 1, so
that a set of typical maneuvers would be selected into
the initial population. However additional randomly
selected maneuvers were also incorporated into the
initial population to provide diversity.

Single Maneuver Tests

Single maneuver tests were performed in order
to determine if IMS was capable of selecting a valid
maneuver in order to achieve a simple objective. Once
the maneuver was selected, the system also had to
chose an appropriate target.

Figure 13 shows a single heading maneuver
that was selected in order to fly over a waypoint with a
longitudinal offset of 2000 feet, and a lateral offset of
1000 feet. In this case, IMS chose a heading maneuver
in order to make the necessary lateral correction. A
heading change of 63 degrees (to the right) was also
chosen in order to intercept the target.
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Figure 13. Single Heading Maneuver
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While the aircraft was directed towards the
target, it overshot the target by approximately 300 feet.
This was primarily due to an initial sideslip, which was
not reflected in the heading performance model. While
gross acquisition of the target was achieved, fine-
tracking performance was not.

Optional methods for improving fine-tracking
accuracy include (1) dynamically re-computing (or
modifying) active maneuvers, (2) the use of higher
fidelity fast-time models, (3) the incorporation of an
initial compensation factor, and (4) the addition of a
“direct-to” control law. While the first two methods
would increase computational requirements, the last
method has the potential of actually reducing the
necessary level of processing. The introduction of
specialized control modes can reduce the number of
maneuvers required to perform a specialized action.

Double Maneuver Tests

Double maneuver tests were performed in order
to determine if IMS was capable of connecting multiple
maneuvers together to form a maneuver sequence. Not
only did the system have to select the necessary
maneuvers and targets, but it also had to determine the
proper order as well as when to schedule the second
maneuver.

Figure 14 shows a double heading maneuver
that was selected in order to intercept a waypoint with a
longitudinal offset of 4000 feet, a lateral offset of 1500
feet. However, the aircraft also had to cross the
waypoint when flying a heading of 0 degrees. In this
case, IMS chose two heading maneuvers that
approximated a pseudo S-Turn maneuver sequence. A
heading change of 51.8 degrees (to the right) was
chosen for the first command, followed by a second
heading change of —53.8 degrees (to the left). The
second command was initiated 7.9 seconds after the first
command was issued.
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Figure 14. Double Heading Maneuvers
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This test achieved results that were similar to
the single heading maneuver, in terms of gross
acquisition and fine-tracking accuracy. Since the same
initial error was introduced, the double heading
maneuver also overshot the intended waypoint before
capturing the commanded intercept. However, IMS was
able to successfully construct a maneuver sequence
using two consecutive lateral maneuvers.

Triple Maneuver Tests

Triple maneuver tests were performed in order
to determine if IMS was capable of combining multiple
lateral and vertical maneuvers into a maneuver
sequence. In this case, the scheduling of maneuvers
could have an affect on longitudinal and lateral
coupling. The distance of the lateral track will also
have a direct affect on time available for completion of
the vertical maneuver.

Figure 15 shows a triple coupled maneuver
that was selected in order to intercept a waypoint with a
longitudinal offset of 5000 feet, a lateral offset of 5000
feet, and an intercept heading of 0 degrees. However, in
this case, the aircraft was also supposed to climb 2000
feet before reaching the waypoint.
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Figure 15. Triple Coupled Maneuver

While the unexpected result did satisfy the
objective, the path that the aircraft chose was
extraordinarily long. Although a path length penalty
was not reflected in the cost function, one would expect
that a simpler “Climbing S-Turn” maneuver sequence
should have been easier to construct. However, it turns
out that IMS was not taking advantage of the
simultaneous scheduling of lateral and vertical
maneuvers. As a result, the ”Climbing S-Turn” could
not be generated. While this issue can be resolved, it is
interesting to note that a valid solution was found, even
in the presence of these additional constraints.
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Conclusions

This paper presented a tactical maneuvering
system that integrates advanced flight control and
autopilot techniques with an IMS system, which uses
an AIS-based approach for maneuver sequence selection.
AIS characteristics, such as adaptability and inherent
memory management, make it possible to create new
solutions in a short period of time. As a result, IMS
has the potential for solving the complex and time-
critical problems inherent in tactical maneuvering.

The tactical autopilot system was shown to be
capable of high performance aerobatic maneuvers, while
also maintaining the ability of flying under degraded
modes. However, perhaps one of the tactical autopilot’s
greatest benefits is the deterministic behavior it
provides. This is especially important since IMS relies
on predictive performance models for clonal selection.

Preliminary results demonstrate that IMS can
successfully select multiple maneuvers and construct
them into a maneuver sequence in order to achieve a
tactical objective. However, more work is needed in
certain core areas, which include:

o Model Prediction — to incorporate rate limits and
other constraints associated with the operating
envelope, and to further reduce the computation
required for model prediction.

o Maneuver Sequence Scheduling — to enable
simultaneous and overlapping maneuvers, and to
improve the application of delay intervals between
maneuvers.

o Clonal Selection Algorithm — to improve the
efficiency of the evolutionary process through
manipulation of population size, number of
generations, and other contributing factors.

o Negative-Selection Algorithm — to enhance tactical
objective characteristic classifications, and enable
dynamic antigen-antibody strength matrix
adaptation.

o Maneuver Database Management — to enable
introduction of both off-line and on-line generated
maneuver sequences into the database, and provide
guidelines for removal.

As these technologies mature, assessments can
be made in regards to the potential of using IMS for
various other applications. However, some applications
requiring higher-levels of autonomy may also require
integration with other intelligent systems, such as
health management, situational awareness, planners and
schedulers.
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